3.253 \(\int (d x)^m \sqrt{a+b x^3+c x^6} \, dx\)

Optimal. Leaf size=157 \[ \frac{(d x)^{m+1} \sqrt{a+b x^3+c x^6} F_1\left (\frac{m+1}{3};-\frac{1}{2},-\frac{1}{2};\frac{m+4}{3};-\frac{2 c x^3}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^3}{b+\sqrt{b^2-4 a c}}\right )}{d (m+1) \sqrt{\frac{2 c x^3}{b-\sqrt{b^2-4 a c}}+1} \sqrt{\frac{2 c x^3}{\sqrt{b^2-4 a c}+b}+1}} \]

[Out]

((d*x)^(1 + m)*Sqrt[a + b*x^3 + c*x^6]*AppellF1[(1 + m)/3, -1/2, -1/2, (4 + m)/3, (-2*c*x^3)/(b - Sqrt[b^2 - 4
*a*c]), (-2*c*x^3)/(b + Sqrt[b^2 - 4*a*c])])/(d*(1 + m)*Sqrt[1 + (2*c*x^3)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (
2*c*x^3)/(b + Sqrt[b^2 - 4*a*c])])

________________________________________________________________________________________

Rubi [A]  time = 0.139226, antiderivative size = 157, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.091, Rules used = {1385, 510} \[ \frac{(d x)^{m+1} \sqrt{a+b x^3+c x^6} F_1\left (\frac{m+1}{3};-\frac{1}{2},-\frac{1}{2};\frac{m+4}{3};-\frac{2 c x^3}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^3}{b+\sqrt{b^2-4 a c}}\right )}{d (m+1) \sqrt{\frac{2 c x^3}{b-\sqrt{b^2-4 a c}}+1} \sqrt{\frac{2 c x^3}{\sqrt{b^2-4 a c}+b}+1}} \]

Antiderivative was successfully verified.

[In]

Int[(d*x)^m*Sqrt[a + b*x^3 + c*x^6],x]

[Out]

((d*x)^(1 + m)*Sqrt[a + b*x^3 + c*x^6]*AppellF1[(1 + m)/3, -1/2, -1/2, (4 + m)/3, (-2*c*x^3)/(b - Sqrt[b^2 - 4
*a*c]), (-2*c*x^3)/(b + Sqrt[b^2 - 4*a*c])])/(d*(1 + m)*Sqrt[1 + (2*c*x^3)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (
2*c*x^3)/(b + Sqrt[b^2 - 4*a*c])])

Rule 1385

Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a +
 b*x^n + c*x^(2*n))^FracPart[p])/((1 + (2*c*x^n)/(b + Rt[b^2 - 4*a*c, 2]))^FracPart[p]*(1 + (2*c*x^n)/(b - Rt[
b^2 - 4*a*c, 2]))^FracPart[p]), Int[(d*x)^m*(1 + (2*c*x^n)/(b + Sqrt[b^2 - 4*a*c]))^p*(1 + (2*c*x^n)/(b - Sqrt
[b^2 - 4*a*c]))^p, x], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && EqQ[n2, 2*n]

Rule 510

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a^p*c^q
*(e*x)^(m + 1)*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, -((b*x^n)/a), -((d*x^n)/c)])/(e*(m + 1)), x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rubi steps

\begin{align*} \int (d x)^m \sqrt{a+b x^3+c x^6} \, dx &=\frac{\sqrt{a+b x^3+c x^6} \int (d x)^m \sqrt{1+\frac{2 c x^3}{b-\sqrt{b^2-4 a c}}} \sqrt{1+\frac{2 c x^3}{b+\sqrt{b^2-4 a c}}} \, dx}{\sqrt{1+\frac{2 c x^3}{b-\sqrt{b^2-4 a c}}} \sqrt{1+\frac{2 c x^3}{b+\sqrt{b^2-4 a c}}}}\\ &=\frac{(d x)^{1+m} \sqrt{a+b x^3+c x^6} F_1\left (\frac{1+m}{3};-\frac{1}{2},-\frac{1}{2};\frac{4+m}{3};-\frac{2 c x^3}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^3}{b+\sqrt{b^2-4 a c}}\right )}{d (1+m) \sqrt{1+\frac{2 c x^3}{b-\sqrt{b^2-4 a c}}} \sqrt{1+\frac{2 c x^3}{b+\sqrt{b^2-4 a c}}}}\\ \end{align*}

Mathematica [A]  time = 0.112619, size = 181, normalized size = 1.15 \[ \frac{x (d x)^m \sqrt{a+b x^3+c x^6} F_1\left (\frac{m+1}{3};-\frac{1}{2},-\frac{1}{2};\frac{m+4}{3};-\frac{2 c x^3}{b+\sqrt{b^2-4 a c}},\frac{2 c x^3}{\sqrt{b^2-4 a c}-b}\right )}{(m+1) \sqrt{\frac{-\sqrt{b^2-4 a c}+b+2 c x^3}{b-\sqrt{b^2-4 a c}}} \sqrt{\frac{\sqrt{b^2-4 a c}+b+2 c x^3}{\sqrt{b^2-4 a c}+b}}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(d*x)^m*Sqrt[a + b*x^3 + c*x^6],x]

[Out]

(x*(d*x)^m*Sqrt[a + b*x^3 + c*x^6]*AppellF1[(1 + m)/3, -1/2, -1/2, (4 + m)/3, (-2*c*x^3)/(b + Sqrt[b^2 - 4*a*c
]), (2*c*x^3)/(-b + Sqrt[b^2 - 4*a*c])])/((1 + m)*Sqrt[(b - Sqrt[b^2 - 4*a*c] + 2*c*x^3)/(b - Sqrt[b^2 - 4*a*c
])]*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^3)/(b + Sqrt[b^2 - 4*a*c])])

________________________________________________________________________________________

Maple [F]  time = 0.008, size = 0, normalized size = 0. \begin{align*} \int \left ( dx \right ) ^{m}\sqrt{c{x}^{6}+b{x}^{3}+a}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x)^m*(c*x^6+b*x^3+a)^(1/2),x)

[Out]

int((d*x)^m*(c*x^6+b*x^3+a)^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{c x^{6} + b x^{3} + a} \left (d x\right )^{m}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^m*(c*x^6+b*x^3+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^6 + b*x^3 + a)*(d*x)^m, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\sqrt{c x^{6} + b x^{3} + a} \left (d x\right )^{m}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^m*(c*x^6+b*x^3+a)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^6 + b*x^3 + a)*(d*x)^m, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (d x\right )^{m} \sqrt{a + b x^{3} + c x^{6}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)**m*(c*x**6+b*x**3+a)**(1/2),x)

[Out]

Integral((d*x)**m*sqrt(a + b*x**3 + c*x**6), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{c x^{6} + b x^{3} + a} \left (d x\right )^{m}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^m*(c*x^6+b*x^3+a)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(c*x^6 + b*x^3 + a)*(d*x)^m, x)